
USING dbt CLOUD TO
GENERATE ANALYTICS AND

ML-READY PIPELINES
SNOWPARK MAKING THIS ALL POSSIBLE

1

x x

PART OF THE PRESENTATION BY MIKKO SULONEN & dbt
@ACCELERATE DATA WITH DBT & SNOWFLAKE

MARCH 30TH, 2023

HOW IT WORKS: SNOWFLAKE

— GA release of Snowpark for python allows dbt users to

seamlessly develop using python scripts that write to tables

— As always, dbt still does not move your data, the code is

executed on Snowflake

— dbt python code is compiled and interpolated by Snowflake

and run as a stored procedure

○ Snowflake → Snowpark and pandas dfs

dbt Python model
reads in sources or

other models

Define a series of
transformations

with Python

Return final
DataFrame

👀 Looks similar to…

Using CTEs to pull
in upstream

datasets

Apply a series of
transformations

with SQL

Final select *
statement

HOW IT WORKS: WORKFLOW

import pandas as pd

def model(dbt, session):

 my_sql_model_df = dbt.ref(‘my_sql_model’).to_pandas()

 final_df = my_sql_model_df[‘revenue’].groupby(‘month’).agg(‘mean’)

 return final_df

— Define a dbt function called model
○ dbt: A class compiled by dbt, which enables you to run your Python

code in the context of your dbt project and DAG

○ session: A class representing your Snowflake’s connection to the

Python backend.

○ Model function must return a single DataFrame

<> models/my_python_model.py

HOW IT WORKS: PYTHON MODEL FUNCTION

version: 2

models:
 - name: my_python_model

 # Document within the same codebase
 description: My transformation written in Python

 # Configure in ways that feel intuitive and familiar
 config:
 materialized: table
 tags: ['python']

 # Test the results of my Python transformation
 columns:
 - name: id
 # Standard validation for 'grain' of Python results
 tests:
 - unique
 - not_null
 tests:
 # Write your own validation logic (in SQL) for Python results
 - custom_generic_test

— All the same great testing,

documentation, and lineage

capabilities as SQL

— Configs supported in:

○ dbt_project.yml

○ .yml files

○ .py using dbt.config()

<> models/config.yml

def model(dbt, session):

 # setting configuration
 dbt.config(materialized="table")

<> models/my_python_model.py

HOW IT WORKS: MODEL CONFIGURATIONS

https://docs.getdbt.com/guides/legacy/writing-custom-generic-tests

— Python models only support

table and incremental

materializations

— Sources and references

supported

○ Part of the dbt class

— Python models can be

referenced downstream like

any other model

def model(dbt, session):

 # DataFrame representing an upstream model
 upstream_model = dbt.ref("upstream_model_name")

 # DataFrame representing an upstream source
 upstream_source =
dbt.source("upstream_source_name", "table_name")

 ...

with upstream_python_model as (

 select * from {{ ref('my_python_model') }}

),

...

<> models/my_python_model.py

<> models/downstream_model.sql

HOW IT WORKS: REFERENCES & MATERIALIZATIONS

— Able to use all packages that are

supported on Snowflake

○ Query directly in snowflake

to check which packages are

supported

— Explicitly configure packages

and versions as best practice

○ Track in dbt’s metadata

def model(dbt, session):
 dbt.config(
 packages = ["numpy==1.23.1", "scikit-learn"]
)

version: 2

models:
 - name: my_python_model
 config:
 packages:
 - "numpy==1.23.1"
 - scikit-learn

<> models/my_python_model.py

<> models/config.yml

HOW IT WORKS: PYTHON PACKAGE CONFIGURATIONS

DEVELOP, TEST, AND DEPLOY DATA
PRODUCTS IN YOUR WAREHOUSE

88

