HAECOSADLY

X A
o “

USING dbt CLOUD TO
GENERATE ANALYTICS AND
ML-READY PIPELINES

— SNOWPARK MAKING THIS ALL POSSIBLE —_—

PART OF THE PRESENTATION BY MIKKO SULONEN & dbt
@ACCELERATE DATA WITH DBT & SNOWFLAKE
MARCH 30TH, 2023

ST

HOW IT WORKS: SNOWFLAKE

— GArrelease of Snowpark for python allows dbt users to
seamlessly develop using python scripts that write to tables

— As always, dbt still does not move your data, the code is
executed on Snowflake

— dbt python code is compiled and interpolated by Snowflake
and run as a stored procedure

o Snowflake — Snowpark and pandas dfs

HOW IT WORKS: WORKFLOW

Define a series of

transformations
with Python
¢« Looks similar to...
Usmg CTEs to pull Apply a series of Final select x
in upstream transformations

datasets with SQL statement

HOW IT WORKS: PYTHON MODEL FUNCTION

— Define a dbt function called model
o dbt: Aclass compiled by dbt, which enables you to run your Python
code in the context of your dbt project and DAG

o session: Aclassrepresenting your Snowflake’s connection to the
Python backend.

o Model function must return a single DataFrame

models/my_python_model.py

import pandas as pd
def model(dbt, session):

my_sql_model_df = dbt.ref(‘my_sql_model’).to_pandas()

final_df = my_sql_model_df[‘revenue’].groupby(‘month’).agg(‘mean’)

return final_df

HOW IT WORKS: MODEL CONFIGURATIONS

models/config.yml
— All the same great testing, version: 2

models:
- name: my_python_model

documentation, and lineage
capabilities as SQL
— Configs supported in:

description: My transformation written in Python

o 0 config:
dbt—prOJeCt'yml materialized: table
o .ymlfiles fags: Lipython™]
o .pyusingdbt.config() columns:
- name: 1id
[] tests:
<> models/my_python_model.py - un-ique

- not_null

def model(dbt, session): tests:

dbt.config(materialized="table")

https://docs.getdbt.com/guides/legacy/writing-custom-generic-tests

HOW IT WORKS: REFERENCES & MATERIALIZATIONS

Python models only support
table and incremental
materializations

Sources and references
supported

o Part of the dbt class
Python models can be
referenced downstream like
any other model

models/my_python_model.py

def model(dbt, session):

upstream_model = dbt.ref("upstream_model_name")

upstream_source =
dbt.source("upstream_source_name", "table_name")

models/downstream_model.sql

with upstream_python_model as (

select * from {{ ref('my_python_model') }}

)

HOW IT WORKS: PYTHON PACKAGE CONFIGURATIONS

models/my_python_model.py

— Able to use all packages that are

def model(dbt, session):
dbt.config(

supported on Snowflake

packages = ["numpy==1.23.1", "scikit-learn"]
)

o Query directly in snowflake
to check which packages are

models/config.yml

Supported version: 2
. models:
— Explicitly configure packages - name: my_python_model
config:
and versions as best practice e =1 231

- scikit-learn

o Trackin dbt's metadata

DEVELOP, TEST, AND DEPLOY DATA
PRODUCTS IN YOUR WAREHOUSE

Test &
Develop pocument Deploy
Raw D
o Bl Tools
- . ' ML Models
o
- . Operational
Analytics

