

USING dbt CLOUD TO GENERATE ANALYTICS AND ML-READY PIPELINES

SNOWPARK MAKING THIS ALL POSSIBLE

PART OF THE PRESENTATION BY MIKKO SULONEN & dbt @ACCELERATE DATA WITH DBT & SNOWFLAKE MARCH 30TH, 2023

HOW IT WORKS: SNOWFLAKE

- GA release of Snowpark for python allows dbt users to seamlessly develop using python scripts that write to tables
- As always, dbt still does **not** move your data, the code is executed on Snowflake
- dbt python code is compiled and interpolated by Snowflake and run as a stored procedure
 - \circ Snowflake \rightarrow Snowpark and pandas dfs

HOW IT WORKS: WORKFLOW

€ Looks similar to...

HOW IT WORKS: PYTHON MODEL FUNCTION

- Define a dbt function called model
 - dbt: A class compiled by dbt, which enables you to run your Python code in the context of your dbt project and DAG
 - session: A class representing your Snowflake's connection to the Python backend.
 - Model function must return a single DataFrame

<>_models/my_python_model.py
import pandas as pd
<pre>def model(dbt, session):</pre>
<pre>my_sql_model_df = dbt.ref('my_sql_model').to_pandas()</pre>
<pre>final_df = my_sql_model_df['revenue'].groupby('month').agg('mean')</pre>
return final_df

HOW IT WORKS: MODEL CONFIGURATIONS

- All the same great testing,
 documentation, and lineage
 capabilities as SQL
- Configs supported in:
 - dbt_project.yml
 - .yml files
 - o .py using dbt.config()

<> models/my_python_model.py

def model(dbt, session):

setting configuration
dbt.config(materialized="table")

<> models/config.yml version: 2 models: - name: my_python_model description: My transformation written in Python config: materialized: table tags: ['python'] # Test the results of my Python transformation columns: - name: id # Standard validation for 'grain' of Python results tests: - unique - not null tests: # Write your own validation logic (in SQL) for Python results

HOW IT WORKS: REFERENCES & MATERIALIZATIONS

- Python models only support
 table and incremental
 materializations
- Sources and references supported
 - Part of the dbt class
- Python models can be
 referenced downstream like
 any other model

models/my_python_model.py def model(dbt, session): upstream_model = dbt.ref("upstream_model_name") # DataFrame representing an upstream source upstream_source = dbt.source("upstream_source_name", "table_name") <> models/downstream_model.sql with upstream_python_model as (select * from {{ ref('my_python_model') }}),

HOW IT WORKS: PYTHON PACKAGE CONFIGURATIONS

<> models/my python model.py

- Able to use all packages that are supported on Snowflake
 - Query directly in snowflake
 to check which packages are
 supported
- Explicitly configure packages and versions as best practice
 - Track in dbt's metadata

def model(dbt, session):
 dbt.config(
 packages = ["numpy==1.23.1", "scikit-learn"]
)

<> models/config.yml	
version: 2	
<pre>models: - name: my_python_model config: packages:</pre>	
- "numpy==1.23.1" - scikit-learn	

X

DEVELOP, TEST, AND DEPLOY DATA PRODUCTS IN YOUR WAREHOUSE

