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HOW IT WORKS: SNOWFLAKE 

— GA release of Snowpark for python allows dbt users to 

seamlessly develop using python scripts that write to tables

— As always, dbt still does not  move your data, the code is 

executed on Snowflake

— dbt  python code is compiled and interpolated by Snowflake 

and run as a stored procedure

○ Snowflake → Snowpark and pandas dfs  
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HOW IT WORKS: WORKFLOW 



import pandas as pd 

def model(dbt, session):

   my_sql_model_df = dbt.ref(‘my_sql_model’).to_pandas()

   final_df = my_sql_model_df[‘revenue’].groupby(‘month’).agg(‘mean’)

   return final_df

— Define a dbt function called model 
○ dbt: A class compiled by dbt, which enables you to run your Python 

code in the context of your dbt project and DAG

○ session: A class representing your Snowflake’s connection to the 

Python backend.

○ Model function must return a single DataFrame 

<>  models/my_python_model.py

HOW IT WORKS: PYTHON MODEL FUNCTION 



version: 2

models:
 - name: my_python_model

   # Document within the same codebase
   description: My transformation written in Python

   # Configure in ways that feel intuitive and familiar
   config:
     materialized: table
     tags: ['python']

   # Test the results of my Python transformation
   columns:
     - name: id
       # Standard validation for 'grain' of Python results
       tests:
         - unique
         - not_null
   tests:
     # Write your own validation logic (in SQL) for Python results
     - custom_generic_test

— All the same great testing, 

documentation, and lineage 

capabilities as SQL

— Configs supported in:

○  dbt_project.yml

○ .yml files 

○ .py using dbt.config()

<>  models/config.yml

def model(dbt, session):

   # setting configuration
   dbt.config(materialized="table")

<>  models/my_python_model.py

HOW IT WORKS: MODEL CONFIGURATIONS 

https://docs.getdbt.com/guides/legacy/writing-custom-generic-tests


— Python models only support 

table and incremental 

materializations 

— Sources and references 

supported 

○ Part of the dbt class 

— Python models can be 

referenced downstream like 

any other model

def model(dbt, session):

   # DataFrame representing an upstream model
   upstream_model = dbt.ref("upstream_model_name")

   # DataFrame representing an upstream source
   upstream_source = 
dbt.source("upstream_source_name", "table_name")

   ...

with upstream_python_model as (

   select * from {{ ref('my_python_model') }}

),

...

<>  models/my_python_model.py

<>  models/downstream_model.sql

HOW IT WORKS: REFERENCES & MATERIALIZATIONS 



— Able to use all packages that are 

supported on Snowflake

○ Query directly in snowflake 

to check which packages are 

supported

— Explicitly configure packages 

and versions as best practice

○ Track in dbt’s metadata

def model(dbt, session):
   dbt.config(
       packages = ["numpy==1.23.1", "scikit-learn"]
   )

version: 2

models:
 - name: my_python_model
   config:
     packages:
       - "numpy==1.23.1"
       - scikit-learn

<>  models/my_python_model.py

<>  models/config.yml

HOW IT WORKS: PYTHON PACKAGE CONFIGURATIONS 



DEVELOP, TEST, AND DEPLOY DATA 
PRODUCTS IN YOUR WAREHOUSE
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